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Branched growth with »p=4 walkers
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Diffusion-limited aggregation has a natural generalization to tparfodels,” in which » random walkers
must arrive at a point on the cluster surface in order for growth to occur. It has recently been proposed that in
spatial dimensionalitd=2, there is an upper criticah,=4 above which the fractal dimensionality of the
clusters isD=1. | compute the first-order correction bfor »<4, obtainingD =1+ %(4— 7). The methods
used can also determine multifractal dimensions to first order-im4
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The formation of patterns in nature is often controlled by“branched growth model,” a phenomenological treatment of
diffusive phenomena. The branching of a less viscous fluidLA proposed a number of years ago by my collaborators
such as water injected into a more viscous fluid such as oiland myself{6]. The purpose of the current work is to show
the dendritic complexity of a snowflake, or the formation of that the branched growth model actually allows easy compu-
veins of metals on the surface of certain rocks, all displaytation of perturbative terms, at least to first order in 4.
pattern formation processes controlled by the diffusive transThis ease can be understood as a consequence of the
port of some quantity1]. branched growth model becoming exact as one approaches

The simplest model for diffusion-controlled growth was »=4. In particular, | obtain the result that the dimensi»is
introduced 20 years ago by Witten and Sanfi&k Their  given to first order in 4 =0 by
model of “diffusion-limited aggregation(DLA) describes
the formation of an aggregate by sequential deposition of D=1+3(4—5)+0(4— 7). 1)
randomly walking particles arriving from infinity. There is an
electrostatic formulation of this process, in which the| obtain as well first-order expressions for the multifractal
n-particle cluster is chosen as an equipotential of a Laplaciadimensions of the growth measure.
field, which has a source at infinity. The local growth prob- |n this work, | will first review the salient features of the
ability, i.e., the probability of deposition of the+1st par-  branched growth model and | will argue that to lowest order
ticle, is then chosen proportional to the local electric field onin 4— 5 it well represents the dynamics of the underlying
the surface of the cluster. Laplacian growth process. | compute the dimensions of the

A natural generalization of this model is to fix the growth clusters by two different means, and show that both methods
probability on the surface proportional to theth power of  give Eq.(1). | then derive an integral formula for the multi-
the local electric field. This corresponds to a random walkfractal dimensions t@®(4— 7), and give a simple approxi-
model in which 7 independent walkers must arrive at the mation to the actual values of these dimensions at this order.
same surface point in order for growth to occur at that pointfFinally, | discuss prospects for extending this computation to
These “» models” were originally introduced by Niemeyer higher orders in 4 7.
et al. as models for dielectric breakdown, and represent a The branched growth model places a fundamental impor-
useful formal extension of DLA3]. tance on the microscopic process of tip splitting, whereby a

These models were used in an important recent work ofrowing branch forks into two growing branches. This pro-
Hastings to propose a systematic perturbative approach f§ess occurs at a microscopic scale, on the order of the par-
DLA [4]. This work argued that the fractal dimensiBnof ticle size or cutoffa in dimension. Thus, the frequency and
7-model clusters collapses =1 in spatial dimensionality detailed dynamics of tip splitting is controlled by micro-
d=2 for »=4, and that this value ofi;=4 therefore repre- scopic and presumably nonuniversal details of the way par-
sents an upper criticah for these model$5]. Dimensions ticles attach at or near the tip of a growing branch. We regard
and other properties of models far<4 can then be deter- tip splitting as the fundamental stochastic process in the
mined by perturbative renormalization in4;. The case of model; we disregard all other forms of stochasticity such as
DLA ( »=1) is in principle accessible, although satisfactorythe “shot noise,” i.e., the purely statistical variations in the
agreement with the numerical reslit=1.71 may be diffi- number of particles depositing at different positions in the
cult to achieve given the large value of-4y required. How-  cluster. The reader should note that the precise role of sto-
ever, considerable computational difficulties arose in implechasticity in DLA has recently been quite controver$ial
menting this program. Nevertheless, rough numerical resultalthough we believe that the theory to be outlined in this
for the first-order correction tB were obtained, which agree work is stable against obvious additional sources of stochas-

with the result expressed in E¢L) below. ticity such as shot noise, a complete understanding of the
Many of the ideas used by Hastings originated in theroles of different kinds of noise requires more systematic
study.
Once a branch splits into two, we follow its additional
"Electronic address: thomas.c.halsey@exxonmobil.com development by implementing a deterministic version of the

1063-651X/2002/6&)/0211045)/$20.00 65021104-1 ©2002 The American Physical Society



THOMAS C. HALSEY PHYSICAL REVIEW E 65 021104

n-model growth rule. Near the tip of a linear equipotential,
the electric field in two dimensions diverges as

—
Growing tip

E(w)~w~*? ¥ _
m particles

with w the distance from the tip. Thus, for>2, the growth FIG. 1. The geometry of the growing branch. After each tip-

nmetacsjuge, V\rlh\llcv:thh IStptrhop(;irtlong:nE) (\\;VV)’VIVS ;ekn’ﬂrely fo\?\;" splitting event, the weaker branch is screened by the stronger. The
ated by gro at the tps. Cce we wo 8pF 4, we tip splittings are indexed by=0. Tip splittings are separated by

neegl only follow the progress of the tips_ in the deterministicIoarticles on the main branch.
portions of the growth, as well as keeping track of the gen-
eration of new tips througkstochastig tip splitting.

: : . which after some algebra determines=2 or 6,= 2 [4,8].
Consider two branches emanating from the same tip g =5 1=57[4.8

" The competition between the two growing tines of the

splitting event. The massegarticle numbersof the o ¢, s intrinsically unstable. A simple computation shows
branches will be written as,_for the left-hand branch, and 4t the eigenvalue of the instability [ig]

ng for the right-hand branch. The growth measures of the
left-hand and right-hand branches will be writtenmgs pg, 7
respectively. Defining relative growth rate and mass param- V=57 1. 9
etersx andy, respectively, by

P Of course, if taken literally, this equation would predict that
= (3 v=0 for =2, i.e., that there is no unstable competition at
PLT PR or below this value ofn. This is unlikely, given that the

phenomenologies of all of the models seem qualitatively

and similar for 0<n<4. We conclude that Eq9) must have
n, n, significant corrections of higher order in4y, that will pre-
y= I (4) serve the fundamental instability of branch competition for
L R T

smaller values ofy.
Since the two tines are supposed to be created with ap-

with ny=n_+ng, we see by elementary means that : " :
TR y y proximately constant probability to be found near the fixed

dy point (x,y)=(%,3), the eigenvalue of the instability can be
dloginy  * Y (5 related to the probability that the branch pair is still active

(i.e., one branch has not been entirely screened by the)other
In principle, we can define a functidd of the overall cluster asny grows; this probability isP«n;”. Since for a main

geometry such that branch of lengthr there will have bee®(r) opportunities to
branch, requiring thaD(1) sidebranch always be active im-
dx -G ©) plies v=D ! [6], which already suggests E(l). However,
dlog(ny) ' it is productive to consider this question is more detail.

Consider a growing branch of particles, which tip-splits
In the branched growth modeg is taken to be a function of everym<n particles. The sidebranches thus generated per-
x andy alone. sist for a certain distance, and are then screened by the main

Let us consider a growing fork, i.e., a branch with equalbranch. Index these tip splittings by<g<J (see Fig. 1L

sub-branchegthe tines of the fork immediately after tip Then at each there can be defined parametefs y;, and
splitting. It is convenient to describe the fork by the confor—nij, giving the relative mass and growth probabilities of the
mal mapw=F(z) that maps the real axis in tlzplane onto  sidebranches, as well as the total mass of the remainder of
the fork in the physicaiv plane;|dw/dz|~* gives the local the main branch plus the sidebranch in questithe total
electric field atw. If we choose a fork for which the angle mass to the right of the branch point in Fig. We choose
between the tines i8;, the map is given by our definition of “left” and “right”in Egs. (3) and(4) so that
eachxjs%. The growth rate at the overall tip is then

w=F(z)=2z%(z?—1)* (7)
J
with ;= 6,/7 and a,=1—(6,/27). The derivative of the Piip= H (1—x;), (10)
map F'(z) possesses zeroes at= *+/a;/2, which corre- =0

spond to the points of the fork. We can fix by requiring o _ . . o
that the points are oriented towards the maximum field, sgvhich is an identity, given the definition df;}. Suppose
that the fork geometry is unchanged by the growth procesghat at thejth branching, the initial value of; is given by

this requires that

x(nr=1)=3—s], (11
d(F'(2) d (F'(2)
dz\ 77 =47\ 7= =0 (8)  defining a random variable for the branching The distri-
Tz, Tlz=z bution of &, p(e), is chosen so thax; does not have any
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singularity in its initial distribution neax=1/2: this reflects As h— o, the weaker branch will die at some fixed mass
the microscopic origin of the stochasticity. and y(h)—h/h. Thus asv—1, the integral oveh on the

_ right-hand side of Eq(18) diverges as

lim p(e)=poe” *, (12

e—0 _

h
v—1 _ -
with the largee behavior constrained by the integrability of f dhh™logl1=y(h)] 1-v +O(). (19

p(e). The apparent singularity ip(e) here arises only from
the definition of this variable; the actual initial distribution in Thus we obtain immediately
the physical variablegxy) is constrained to be nonsingular
by this choice. 1—
In the branched growth model, the dependence;abn A= _V+O(1_ v)2 (20)

n;t and g; at each branching point is the same; we now hpo
assume this to be the case in this more general model as well.

The argument below requires that this assumption is Correqty that the sum in Eq15) is O(1— »)=0(4— 7) [9]

to lowest order in 4 7. The fact that this “propagator” sum is(1—wv)logn is

N If tue dynamics of each bran_chllzng péOlr_}_thare The S"’:f‘nethe key formal result of this work, which allows us to con-
then there must exist son&(x,y) in Eq. (6). The values o struct a direct renormalization group for the dimension and

xandy can then be integrated to obtad(h),ly(lh) from BAs. other properties of they models. The procedure, in principle,
(5 and (6), with hxny and (x(0),y(0))=(z,2). Note that s as follows. First, a naive perturbative expansiorpjnis
this choice of variables means that the dependenseoofs  constructed along the lines of RgfL0]. The computation

can be encoded by above shows an example to first ordepin This expansion
should account both for the different contributions of the
X(ny,e)~X(eny=h), (13)  various tips to the quantity being computed, as well as the
influence of the internal structure of the various branches on
and similarly fory. This formula is exact fon large. the functionsx(h),y(h). In this expansion, sums ovémﬁ’}
We can now see that t0(po), such as that appearing in E€L5) will appear, as well as

more complex, albeit still ultimately logarithmic, sums. Per-
. . Y forming these sums, one will replace the original seriesgin
<p‘ip>_1_; <Xi>_1_j20 f de poe™ X(enj 1), with a logarithmic series in 4 ». The methods of Ref10]
(14)  easily show that the higher-order termspign will be higher
order in 1—-» upon computation of these sums. This series
or, extracting the dependence fm 1} from the integrals, then forms the basis of a direct renormalization calculation
of the quantity of interest.
B o We illustrate this by returning to the growth rate of the
(Pipy=1-2 <nj,Ty>(p0J' dh hylx(h))- (15  overall branch tip. To zeroth order in-1v, we can represent
i 0 .
the structure of the two branches, which we use to compute
x(h) andy(h), by a fork with two growth sites at the fork
tips. Thus we generalize the fork with equal-length tines to a
fork which may grow different lengths on the two sides: in
so doing, there will be a tendency for the two sides to curve
> (n;)=Xlogn. (16)  away from being perfectly straight and separated by an angle
j=0 " 0., as shown in Fig. 1. Standard techniques of integrating
the conformal map for Laplacian growth structures will suf-
We will now confirm this form, and compute the parameterfice for determining the fulk(h) andy(h) for this casq11];
\. Consider the second branchingjat1. We have below we give a simple approximation to these quantities. To
this order, there are no additional variables describing the

To evaluateX;_o(n; 1), we use a simple trick. Let us first
assume that

1 a1 internal structure of the branches, so we are justified in as-
A logn= F+j21 (1) =15+ {Mlogl(1—-yo)n—m]), suming the sama&(h) andy(h) at each branch point.
(17) However, it turns out that we need not compu{d) or

y(h) explicitly in order to compute the first-order correction
since the number of particles in the main branch below thdo the tip growth rate. From the definitionsxfh) andy(h),
second sidebranching is;=(1-yo)no—m (see Fig. 1  We have that
Note thatn=ngy . This leads to

d(ynr) _

dn, X, (21

1 _ Po * _— Am 1
—5=— A | dhh"Flog[1-y(h) ]+ ——((1=Yo) ).
0 n

(18  implying by integration of parts that
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o . % . To obtain explicit results for the multifractal dimensions,
J dh h"=*x(h)=(1- V)f dhh*y(h). (22 we need the trajectoriegh) andy(h). | use a simple arti-
0 0 fice that gives a useful approximation to this trajectory. The
: v _ - integral in Eq.(28) is dominated by values of nearx=3.
The divergence of dh h*~tlog[1—y(h)] asv—1 originates In . . . 2
from large values oh, or small values of.. Thus to lowest W? can thus approximate the integral by takmlg 1the linear
order in 1—= v we have trajectory in thex—y plane near the centex{y)=(3,3) and
extending it to the boundaries=0,1. (This approximation is

1 1 referred to as “modek” in Ref. [6].) Explicitly, we write,
J' dh h”*log[1-y(h)] f dhh"%y(h) (23 taking the lowest order=1,

I-h if h<}
and X(h):[ ’ . 29
2

- - 0 if h=
© dh v~ x(h
S (o[ o= ST XD

ogn

pofgdn v y(h). and
=(1—v)logn, (24 3—3h if h<3
y(h)= _ L (30)
so that 1/8h if h=3
Pip=1—(1—w)logn+0O(1—»)% (25  which agrees with Eq(5).

The approximate result for the multifractal dimensions is
Since we expecptipoan , with D mass-radius scaling then
dimension[12], this implies with Eq.(9) that

,1_1

2
D=1+%(4_ 7)+0(4— 7’)2’ (26) o(q)=2(4— 77) +O(4 7)%, (31
as advertised. Note that due to our total suppression of nongrowing por-
To compute multifractal dimensions ©(4— %), | use tions of the measure, we do not recover the idendip)
similar techniques. Following Refl0], and usingi as an =-D.

index to growth tips, we see that the multifractal spectrum The extension of these results to higher orders 74
o(q) for the growth measuréot the harmonic measurés  and in particular to the case of DLAyE=1), will require

given by

<2 p|q> =n"@W=1+Xlogn
1

Fdh{xq(h)
0

some further formal development. Referend®] success-
fully computes the most divergent and next-most divergent
terms at all orders i for the multifractal dimensions for
the branched growth model; the behavior of the higher order

logarithms in this case does allow resummation of the theory

+O(1- )2 27) for, e.g., quenched and annealed multifractal dimensions. In
' our case, we need to add a family of terms representing the

deviations from the perfect branched growth model behavior,

+[1=x(h)]9-1}

yielding which arise from fluctuations in the internal structure of the
1- . branches. Fortunately, there are indications that these fluc-
o(q) = — - V(f dh{xq(h)+[1—x(h)]q—1}) tuations are also renormalizali@].
0
| am grateful to M. B. Hastings for drawing my attention
+0(1-v)2. (28)  to Ref.[4], and for a critical reading of this manuscript.
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