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Branched growth with hÉ4 walkers
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Diffusion-limited aggregation has a natural generalization to the ‘‘h models,’’ in whichh random walkers
must arrive at a point on the cluster surface in order for growth to occur. It has recently been proposed that in
spatial dimensionalityd52, there is an upper criticalhc54 above which the fractal dimensionality of the
clusters isD51. I compute the first-order correction toD for h,4, obtainingD511

1
2 (42h). The methods

used can also determine multifractal dimensions to first order in 42h.
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The formation of patterns in nature is often controlled
diffusive phenomena. The branching of a less viscous fl
such as water injected into a more viscous fluid such as
the dendritic complexity of a snowflake, or the formation
veins of metals on the surface of certain rocks, all disp
pattern formation processes controlled by the diffusive tra
port of some quantity@1#.

The simplest model for diffusion-controlled growth wa
introduced 20 years ago by Witten and Sander@2#. Their
model of ‘‘diffusion-limited aggregation’’~DLA ! describes
the formation of an aggregate by sequential deposition
randomly walking particles arriving from infinity. There is a
electrostatic formulation of this process, in which t
n-particle cluster is chosen as an equipotential of a Laplac
field, which has a source at infinity. The local growth pro
ability, i.e., the probability of deposition of then11st par-
ticle, is then chosen proportional to the local electric field
the surface of the cluster.

A natural generalization of this model is to fix the grow
probability on the surface proportional to theh th power of
the local electric field. This corresponds to a random w
model in whichh independent walkers must arrive at th
same surface point in order for growth to occur at that po
These ‘‘h models’’ were originally introduced by Niemeye
et al. as models for dielectric breakdown, and represen
useful formal extension of DLA@3#.

These models were used in an important recent work
Hastings to propose a systematic perturbative approac
DLA @4#. This work argued that the fractal dimensionD of
h-model clusters collapses toD51 in spatial dimensionality
d52 for h>4, and that this value ofhc54 therefore repre-
sents an upper criticalh for these models@5#. Dimensions
and other properties of models forh,4 can then be deter
mined by perturbative renormalization in 42h. The case of
DLA ( h51) is in principle accessible, although satisfacto
agreement with the numerical resultD51.71 may be diffi-
cult to achieve given the large value of 42h required. How-
ever, considerable computational difficulties arose in imp
menting this program. Nevertheless, rough numerical res
for the first-order correction toD were obtained, which agre
with the result expressed in Eq.~1! below.

Many of the ideas used by Hastings originated in
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‘‘branched growth model,’’ a phenomenological treatment
DLA proposed a number of years ago by my collaborat
and myself@6#. The purpose of the current work is to sho
that the branched growth model actually allows easy com
tation of perturbative terms, at least to first order in 42h.
This ease can be understood as a consequence of
branched growth model becoming exact as one approa
h54. In particular, I obtain the result that the dimensionD is
given to first order in 42h>0 by

D511 1
2 ~42h!1O~42h!2. ~1!

I obtain as well first-order expressions for the multifrac
dimensions of the growth measure.

In this work, I will first review the salient features of th
branched growth model and I will argue that to lowest ord
in 42h it well represents the dynamics of the underlyin
Laplacian growth process. I compute the dimensions of
clusters by two different means, and show that both meth
give Eq.~1!. I then derive an integral formula for the mult
fractal dimensions toO(42h), and give a simple approxi
mation to the actual values of these dimensions at this or
Finally, I discuss prospects for extending this computation
higher orders in 42h.

The branched growth model places a fundamental imp
tance on the microscopic process of tip splitting, whereb
growing branch forks into two growing branches. This pr
cess occurs at a microscopic scale, on the order of the
ticle size or cutoffa in dimension. Thus, the frequency an
detailed dynamics of tip splitting is controlled by micro
scopic and presumably nonuniversal details of the way p
ticles attach at or near the tip of a growing branch. We reg
tip splitting as the fundamental stochastic process in
model; we disregard all other forms of stochasticity such
the ‘‘shot noise,’’ i.e., the purely statistical variations in th
number of particles depositing at different positions in t
cluster. The reader should note that the precise role of
chasticity in DLA has recently been quite controversial@7#;
although we believe that the theory to be outlined in t
work is stable against obvious additional sources of stoch
ticity such as shot noise, a complete understanding of
roles of different kinds of noise requires more systema
study.

Once a branch splits into two, we follow its addition
development by implementing a deterministic version of
©2002 The American Physical Society04-1
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h-model growth rule. Near the tip of a linear equipotenti
the electric field in two dimensions diverges as

E~w!;w21/2 ~2!

with w the distance from the tip. Thus, forh.2, the growth
measure, which is proportional toEh(w), is entirely domi-
nated by growth at the tips. Since we work nearh54, we
need only follow the progress of the tips in the determinis
portions of the growth, as well as keeping track of the g
eration of new tips through~stochastic! tip splitting.

Consider two branches emanating from the same
splitting event. The masses~particle numbers! of the two
branches will be written asnL for the left-hand branch, and
nR for the right-hand branch. The growth measures of
left-hand and right-hand branches will be written aspL, pR,
respectively. Defining relative growth rate and mass para
etersx andy, respectively, by

x5
pL

pL1pR
~3!

and

y5
nL

nL1nR
[

nL

nT
, ~4!

with nT5nL1nR , we see by elementary means that

dy

d log~nT!
5x2y. ~5!

In principle, we can define a functionG of the overall cluster
geometry such that

dx

d log~nT!
5G. ~6!

In the branched growth model,G is taken to be a function o
x andy alone.

Let us consider a growing fork, i.e., a branch with equ
sub-branches~the tines of the fork! immediately after tip
splitting. It is convenient to describe the fork by the confo
mal mapw5F(z) that maps the real axis in thez plane onto
the fork in the physicalw plane;udw/dzu21 gives the local
electric field atw. If we choose a fork for which the angl
between the tines isu1 , the map is given by

w5F~z!5za1~z221!a2 ~7!

with a15u1 /p anda2512(u1/2p). The derivative of the
map F8(z) possesses zeroes atz656Aa1/2, which corre-
spond to the points of the fork. We can fixa1 by requiring
that the points are oriented towards the maximum field,
that the fork geometry is unchanged by the growth proce
this requires that

d

dz S F8~z!

z2z1
D U

z5z1

5
d

dz S F8~z!

z2z2
D U

z5z2

50 ~8!
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which after some algebra determinesa15 2
5 or u15 2

5 p @4,8#.
The competition between the two growing tines of t

fork is intrinsically unstable. A simple computation show
that the eigenvalue of the instability is@4#

n5
h

2
21. ~9!

Of course, if taken literally, this equation would predict th
n50 for h52, i.e., that there is no unstable competition
or below this value ofh. This is unlikely, given that the
phenomenologies of all of theh models seem qualitatively
similar for 0,h,4. We conclude that Eq.~9! must have
significant corrections of higher order in 42h, that will pre-
serve the fundamental instability of branch competition
smaller values ofh.

Since the two tines are supposed to be created with
proximately constant probability to be found near the fix

point (x,y)5( 1
2 , 1

2 ), the eigenvalue of the instability can b
related to the probability that the branch pair is still acti
~i.e., one branch has not been entirely screened by the o!
as nT grows; this probability isP}nT

2n . Since for a main
branch of lengthr there will have beenO(r ) opportunities to
branch, requiring thatO(1) sidebranch always be active im
plies n5D21 @6#, which already suggests Eq.~1!. However,
it is productive to consider this question is more detail.

Consider a growing branch ofn particles, which tip-splits
every m!n particles. The sidebranches thus generated
sist for a certain distance, and are then screened by the m
branch. Index these tip splittings by 0< j <J ~see Fig. 1!.
Then at eachj there can be defined parametersxj , yj , and
nj ,T , giving the relative mass and growth probabilities of t
sidebranches, as well as the total mass of the remainde
the main branch plus the sidebranch in question~the total
mass to the right of the branch point in Fig. 1!. We choose
our definition of ‘‘left’’ and ‘‘right’’ in Eqs. ~3! and~4! so that
eachxj<

1
2 . The growth rate at the overall tip is then

ptip5)
j 50

J

~12xj !, ~10!

which is an identity, given the definition of$xj%. Suppose
that at thej th branching, the initial value ofxj is given by

xj~nj ,T51!5 1
2 2« j

n , ~11!

defining a random variable for the branching« j . The distri-
bution of «, r~«!, is chosen so thatxj does not have any

FIG. 1. The geometry of the growing branch. After each t
splitting event, the weaker branch is screened by the stronger.
tip splittings are indexed byj >0. Tip splittings are separated bym
particles on the main branch.
4-2
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BRANCHED GROWTH WITHh'4 WALKERS PHYSICAL REVIEW E 65 021104
singularity in its initial distribution nearx51/2: this reflects
the microscopic origin of the stochasticity.

lim
«→0

r~«!5r0«n21, ~12!

with the large« behavior constrained by the integrability o
r~«!. The apparent singularity inr~«! here arises only from
the definition of this variable; the actual initial distribution
the physical variables~x,y! is constrained to be nonsingula
by this choice.

In the branched growth model, the dependence ofxj on
nj ,T and « j at each branching point is the same; we n
assume this to be the case in this more general model as
The argument below requires that this assumption is cor
to lowest order in 42h.

If the dynamics of each branching point are the sam
then there must exist someG(x,y) in Eq. ~6!. The values of
x andy can then be integrated to obtainx(h),y(h) from Eqs.

~5! and ~6!, with h}nT and „x(0),y(0)…5( 1
2 , 1

2 ). Note that
this choice of variables means that the dependence ofx on «
can be encoded by

x~nT ,«!'x~«nT[h!, ~13!

and similarly fory. This formula is exact fornT large.
We can now see that toO(r0),

^ptip&512(
j

^xj&512(
j 50

E d« r0«n21x~«nj ,T!,

~14!

or, extracting the dependence on$nj ,T% from the integrals,

^ptip&512(
j

^nj ,T
2n&Xr0E

0

`

dh hn21x~h! C. ~15!

To evaluate( j 50^nj ,T
2n&, we use a simple trick. Let us firs

assume that

(
j 50

^nj ,T
2n&5l logn. ~16!

We will now confirm this form, and compute the parame
l. Consider the second branching atj 51. We have

l logn5
1

nn 1(
j 51

^nj ,T
2n&5

1

nn 1^l log@~12y0!n2m#&,

~17!

since the number of particles in the main branch below
second sidebranching isn15(12y0)n02m ~see Fig. 1!.
Note thatn[n0,T . This leads to

1

nn 52
r0

nn lE
0

`

dh hn21 log@12y~h!#1
lm

n
^~12y0!21&.

~18!
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As h→`, the weaker branch will die at some fixed ma
and y(h)→h̄/h. Thus asn→1, the integral overh on the
right-hand side of Eq.~18! diverges as

E dh hn21 log@12y~h!#52
h̄

12n
1O~1!. ~19!

Thus we obtain immediately

l5
12n

h̄r0

1O~12n!2 ~20!

so that the sum in Eq.~15! is O(12n)5O(42h) @9#.
The fact that this ‘‘propagator’’ sum is}(12n)logn is

the key formal result of this work, which allows us to co
struct a direct renormalization group for the dimension a
other properties of theh models. The procedure, in principle
is as follows. First, a naive perturbative expansion inr0 is
constructed along the lines of Ref.@10#. The computation
above shows an example to first order inr0 . This expansion
should account both for the different contributions of t
various tips to the quantity being computed, as well as
influence of the internal structure of the various branches
the functionsx(h),y(h). In this expansion, sums over^nj ,T

2n&
such as that appearing in Eq.~15! will appear, as well as
more complex, albeit still ultimately logarithmic, sums. Pe
forming these sums, one will replace the original series inr0
with a logarithmic series in 12n. The methods of Ref.@10#
easily show that the higher-order terms inr0 will be higher
order in 12n upon computation of these sums. This ser
then forms the basis of a direct renormalization calculat
of the quantity of interest.

We illustrate this by returning to the growth rate of th
overall branch tip. To zeroth order in 12n, we can represen
the structure of the two branches, which we use to comp
x(h) and y(h), by a fork with two growth sites at the fork
tips. Thus we generalize the fork with equal-length tines t
fork which may grow different lengths on the two sides:
so doing, there will be a tendency for the two sides to cu
away from being perfectly straight and separated by an an
u1 , as shown in Fig. 1. Standard techniques of integrat
the conformal map for Laplacian growth structures will su
fice for determining the fullx(h) andy(h) for this case@11#;
below we give a simple approximation to these quantities.
this order, there are no additional variables describing
internal structure of the branches, so we are justified in
suming the samex(h) andy(h) at each branch point.

However, it turns out that we need not computex(h) or
y(h) explicitly in order to compute the first-order correctio
to the tip growth rate. From the definitions ofx(h) andy(h),
we have that

d~ynT!

dnT
5x, ~21!

implying by integration of parts that
4-3
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E
0

`

dh hn21x~h!5~12n!E
0

`

dh hn21y~h!. ~22!

The divergence of*dh hn21 log@12y(h)# asn→1 originates
from large values ofh, or small values ofy. Thus to lowest
order in 12n we have

E
0

`

dh hn21 log@12y~h!#52E
0

`

dh hn21y~h! ~23!

and

(
j

^nj ,T
2n&r0E

0

`

dh hn21x~h!5
r0*0

`dh hn21x~h!

r0*0
`dh hn21y~h!

logn

5~12n!logn, ~24!

so that

ptip512~12n!logn1O~12n!2. ~25!

Since we expectptip}nD2121, with D mass-radius scaling
dimension@12#, this implies with Eq.~9! that

D511 1
2 ~42h!1O~42h!2, ~26!

as advertised.
To compute multifractal dimensions toO(42h), I use

similar techniques. Following Ref.@10#, and usingi as an
index to growth tips, we see that the multifractal spectr
s(q) for the growth measure~not the harmonic measure! is
given by

K (
i

pi
qL [n2s~q!511l lognS E

0

`

dh$xq~h!

1@12x~h!#q21% D 1O~12n!2, ~27!

yielding

s~q!52
12n

h S E
0

`

dh$xq~h!1@12x~h!#q21% D
1O~12n!2. ~28!
ev

is

02110
To obtain explicit results for the multifractal dimension
we need the trajectoriesx(h) andy(h). I use a simple arti-
fice that gives a useful approximation to this trajectory. T
integral in Eq.~28! is dominated by values ofx nearx5 1

2 .
We can thus approximate the integral by taking the lin
trajectory in thex2y plane near the center (x,y)5( 1

2 , 1
2 ) and

extending it to the boundariesx50,1. ~This approximation is
referred to as ‘‘modelZ’’ in Ref. @6#.! Explicitly, we write,
taking the lowest ordern51,

x~h!5H 1
2 2h if h, 1

2

0 if h> 1
2

~29!

and

y~h!5H 1
2 2 1

2 h if h, 1
2

1/8h if h> 1
2

~30!

which agrees with Eq.~5!.
The approximate result for the multifractal dimensions

then

s~q!52~42h!
q21

q11
1O~42h!2, ~31!

Note that due to our total suppression of nongrowing p
tions of the measure, we do not recover the identitys(0)
52D.

The extension of these results to higher orders in 42h,
and in particular to the case of DLA (h51), will require
some further formal development. Reference@10# success-
fully computes the most divergent and next-most diverg
terms at all orders inr0 for the multifractal dimensions for
the branched growth model; the behavior of the higher or
logarithms in this case does allow resummation of the the
for, e.g., quenched and annealed multifractal dimensions
our case, we need to add a family of terms representing
deviations from the perfect branched growth model behav
which arise from fluctuations in the internal structure of t
branches. Fortunately, there are indications that these
tuations are also renormalizable@6#.

I am grateful to M. B. Hastings for drawing my attentio
to Ref. @4#, and for a critical reading of this manuscript.
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